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I. Introduction 

 PCA is a method for analyzing a set of spectra to see if they can be represented as 

linear combinations of a smaller number of component spectra.  This program 

implements PCA as described by Ressler (Environ. Sci. Technol.2000, 34,950-958).  The 

notation in the program is as used in that paper. 

 

II. Main screen 

 The program starts out by asking for unknowns, one at a time.  By default, files 

with extension e or b are shown in the file dialog.  To end, hit Cancel in the file-open 

dialog box.  After that, you see a screen which looks like that in Figure 1, except for the 

red labels. 

 This screen shot was taken with a demonstration dataset, each file of which was 

made by taking linear combinations of the same three references and then adding noise.  

This is therefore a highly-idealized case in which PCA will tell us what we already know, 

that there are three components. 

 At the upper left is the list of paths you selected.  To the right of this is a set of 

checkboxes wired like radio buttons so you can only click one at a time.  This selects 

which unknown is plotted, along with its reconstruction from the chosen set of 

components and the residual thereof.  These data are shown on the graph to the right in 

white for the input data, green for the reconstruction and red for the residual. 

 Above the graph are two ‘badness-of-fit’ indicators.  One of these is for the 

individual file shown in the graph, and the other is the average over the whole set.  This 

quantity is defined as , with the index ranging over the points in an 

individual curve or the whole set. 
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 The component list to the lower right shows the breakdown into the abstract 

components.  Note that these components are at best linear combinations of spectra 

corresponding to species in the unknowns and often don’t look much like EXAFS.  The 

first column in the list is the eigenvalues, whose squares represent the contribution to the 



data made by that particular component.  Next is the indicator (IND) value of 

Malinowski, a measure of the usefulness of adding in another component.  According to 

the semi-empirical theory of errors in PCA, the last useful component is the one at which 

IND is a minimum.  The next column is a set of checkboxes which let you add selected 

components to the fit.  If you add all of them, as is the case when the program starts, the 

fit is perfect and perfectly meaningless. Here, we’ve added the first three.  One usually 

adds them in order of decreasing eigenvalue.  Next is another column of checkboxes 

allowing you to select one component to be plotted on the graph at lower right.  This 

component is weighted by the eigenvalue, so insignificant components come out small.  

The contribution of each weighted component to the data being plotted in the upper graph 

is given by the column of numbers at the right edge of the components list complex.  If a 

component is not selected for inclusion, its contribution to the whole is zero, regardless of 

the number in the contributions column.  You can save each individual component to a 

file (default extension cmp).  If you do a linear least-squares fit to one of the data files 

using these components as references, you will get the coefficients shown in the 

contributions column.  Thus, in the present example, the first data file (10-10-80n.b) fits 

to –0.162*comp1+0.495*comp2-0.562*comp3, where compi is the ith component. 

 It should be noted that the method rarely works as well on real data as it does on 

this simulated data.  Don’t expect the residual to look like pure white noise even when 

you add the right number of components.  In this example, the fourth and higher 

components all look like pure noise, while there’s obvious signal in the first three (not 

shown).   For real data, it’s not so obvious and one must look to the IND value and prior 

knowledge about what’s reasonable for the system. 

 

III. Target transformation 

 The PCA fit gives no indication of what the components actually represent.  One 

way of finding out is to use the target transformation.  This procedure takes a reference 

data file and removes from it everything which doesn’t look like something found in the 

unknowns.  Thus, if the unknowns can be represented as mixtures containing the 

reference being tested, the target transformation will leave the reference spectrum 



unaffected.  Otherwise, the output won’t look like the input.  The screen in which this test 

is done is shown in Figure 2. 

 In this case, we have tested a reference which was not one of the three from which 

the simulated data were made.  The SPOIL value (a measure of how much the target 

transformation disagrees with the input) is much greater than the 0-3 one expects to see 

for a reference which is really represented in the data, and the reconstruction looks 

nothing like the original.  In most real cases, it’s not so obvious that a reference doesn’t 

belong, which is why the SPOIL value is computed.  There are buttons which allow you 

to save the transformed file (default extension trg) and to read in another candidate 

reference. 

 It is assumed that the test reference data covers the same or almost the same range 

as the data from the unknowns.  There is a method (iterative target factor analysis) for 

doing the target test which lets one violate this assumption, but this program doesn’t do 

it. 
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Figure 1.  The main PCA screen, for a demonstration set of data.  The fit has been limited 
to the first three components, the first one of which is shown in the component graph.  

The first data file is plotted along with a fit and the resulting residual. 



 
 

Figure 2.  The target-transformation screen.  The reference being tested is not one of the 
ones from which the demonstration data set was created.  Therefore, the SPOIL value is 

high and the transformed data don’t resemble the input. 
 
 
 
 
 
 
 
 
 
 
 


